MHCquant is a bioinformatics analysis pipeline used for quantitative processing of data dependant (DDA) peptidomics data.

It was specifically designed to analyse immunopeptidomics data, which deals with the analysis of affinity purified, unspecifically cleaved peptides that have recently been discussed intensively in the context of cancer vaccines. Bassani-Sternberg et al., 2016

The workflow is based on the OpenMS C++ and Fred2.0 Immunonodes framework for computational mass spectrometry. RAW files (mzML) serve as inputs and a database search (Comet) is performed based on a given customized fasta protein database from vcf. FDR rescoring is applied using Percolator 3.0 based on a competitive target-decoy approach (reversed decoys). For label free quantification all input files undergo identification based retention time alignment (MapAlignerIdentification), and targeted feature extraction matching ids between runs (FeatureFinderIdentification). Ultimately MHC affinity predictions can be run in parallel and compared with the mass spectrometry search output.

A concise test data set is available at the KohlbacherLab github account.


Mass Spectrometry Raw Data (mzML)

Annotated Variant Calling Files (vcf)

HLA Typing (table)


Search Results (mzTab and txt)

Affinity Prediction Results (table)

Additional software/data




Report Issues:

Contact us on GitHub:

Report bug

Ask question

Funded by deNBI

Ask question

Login to write a comment


By downloading the workflow you agree to our terms & conditions.

  • Author

  • Created on

    02.07.2018 11:38:41
  • Last Uploaded on

    08.05.2019 20:36:10
  • Rating

    This workflow has not been rated yet

  • Tags

    This workflow has no tags

  • Requirements